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Abstract—The torsional impact response of a flat annular or circumferential edge crack in an infinite
elastic medium with a cylindrical cavity is investigated. Laplace and Hankel transforms are used to
reduce the problem to a set of integral equations. These equations are solved numerically and the
singular stress field near the crack tip is determined. The influence of geometry and inertia upon
the stress intensity factor is shown graphically in detail.

1. INTRODUCTION

The impact response of a crack has been a subject of recent intercst. For an axisymmetric
geometry, the transient response of a flat annular crack in a finite elastic cylinder under a
torsional load has been considered (Shindo, 1982). In studying the fracture problem in
pressure vessels, pipes and other cylindrical containers, if the crack around the inner
boundary is sufficicntly small, then the effect of the outer boundary can be neglected as a
first approximation (Anzai et al.. 1981).

Thus the present analysis considers the lincar clastodynamic fracturc analysis of a
cylindrical cavity having a flat annular or circumferential edge crack, which is subjccted to
a torsional impact load. Laplace and Hankel transforms are used to reduce the mixed
boundary valuc problem to a sct of integral equations. The solution is then expressed in
terms of a singular integral equation of the first kind having the kernel with a fast rate of
convergence. The solution of the singular integral equation is expanded in terms of the
Chebyshev polynomials for the internal crack or the Jacobi polynomials for the edge crack
and obtained by solving an infinite set of linear algebraic equations (Erdogan er al., 1973).
A numerical Laplace inversion technique (Papoulis, 1957) is used to recover the time
dependence of the solution. As the static results have not been reported yet, we discuss the
static problem here, too. The dynamic stress intensity factor is computed and the numerical
values are shown in graphs for various geometrical parameters at designated time instances.

2. FORMULATION OF THE PROBLEM

Let an infinitc homogeneous isotropic medium with a cylindrical cavity of radius «, as
shown in Fig. |, be subjected to torsional load. The axis of the cylindrical cavity is assumed

Fig. 1. Geometry and coordinate system.
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to coincide with the z-axis of the cylindrical coordinate system (r, 6, ). Let i and p be the
shear modulus of the medium and the mass density, respectively. A flat annular crack of
inner radius & and outer radius ¢ lies in the plane = = 0 with its center at the origin of the
coordinate axes. Let the components of the displacements in the -, 8- and =-directions be
denoted by u,. u, and w., respectively. For torsional motion, «, and w. vanish everywhere
and u, is a function of r, z and time ¢ only. The displacement field can thus be written as

u,=u. =0, uy=udrzt. {1

The stress field corresponding to eqn (1) is

_ (autg l )
o =K or r“’

ou
Tp = p—é:‘f. ()

Under these considerations, the equation of motion can be written as

62u.; 1 (3“” Uy 3213,; _ i az“g
at Tror it 9% o or

3

where ¢y = \/ {1/ p) is the shear wave velocity.

For the present case, the initial conditions are all taken to be zero. The sudden torque
applied to the medium gencrates torsional waves normally incident on the crack. By the
principle of superposition, the equivalent boundary conditions for which the wave passes
across the crack plane at z = 0 can be written as

10:(r,0,0) = —1, : H(), b<r<c

w(r,0.0=0, agr<h cgr {4
tm(a'z! !) = 0 (5)

where H(1) is a Heaviside unit step function and 1, is a constant with the dimensions of
stress. In addition to eqns (4) and (5), all components of displacement and stress vanish at
remote distances from the crack region.

A Laplace transform pair is defined by

I*p) = J; Sy e de

I
SO =5= J; S*(p) e dp (6)

2ni

where Br stands for the Bromwich path of integration. Applying the Laplace transform to
eqn (3), we oblain

FPur 1 dul ut
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The boundary conditions in the Laplace transform plane are
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Tor
th(r,0.p) = ——}%. b<r<ce

uMr.0.p) =0, a<r<b cxr 8)

hia.z.p}=0. 9
Now using the integral transform, we obtain a solution of eqn (7)

< x

udr.z.p) = J A{s.p) (sr) e~ 7 ds+J~ Cs. pIK () sin (so) ds (10)

4

where J,( ) and K,( ) are usual n-order Bessel and modified Bessel functions, respectively.
A(s.p) and C(s, p) are unknown functions to be determined and

_ s E 2312
o)

The Laplace transforms of the stress components are

F <l

ir.o.p) = - ;xj sA{s. pM{sr) ¢ ds— ;zj' 7 Cls, p)Ka{yr) sin (s2)ds
4] 0

£

yAG P (sr).e 7 ds+ ;:J.

#

£

i{r.zp)= —q J: ; sCis, p)K,{yr) cos {52) ds. {an

Substituting egn (11}, into egn {9), we obtiin

£

—-‘f sA(s, sy ¢ 7 d:s'-"‘ yCs, pYKs(ya) sin {s2) ds = 0. (12)
(1] 4
Applying the Fourier sine transform to eqn (12), we obtain

§ 00 n
Ky Clsp) = ~ — J; P A(m)J2(na) dn. (13)

Making use of eqns (10) und (11), and conditions (8) leads to the following triple integral
equations :

—-J veA(s, p)(sr) ds’-(:{ sCE MK ds = — Lol (h<r<e)
0 o uep
J‘ A p)sn)ds=0 (agr<h c<r). (14)
1]
In order to solve the triple integral equations, eqns {14), we introduce the representation
Als.p) = —-J; q9*(q.p)J:(sq) dq. (15)
For the sake of convenience, we perform the following nondimensionalization and change

of variables:

SAS 24:12-8
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ap = ale, by = bfc
ro=rlc=3{(1=bo){+ 1 +b,}
go = glc = (1 =bp)r+1+b,}
P = pclcy

®*(r. P) = $*(q.p) ;':—‘;I"—o. (16)

Substituting eqns (13) into eqns (14) and making use of eqns (15) and (16). we find that

i l-b 2
J. : 22{R0('O~ 90) + Ry (79, qo) + Ry(ro. o)} @*(r. P)dr = —1 (b<r<c)

-1 2 Ty
1
f QM. Pydr=0 (a<r<h) {7
-1
where
Ro(ro.q0) = J; sJy(squ)J (rys) ds (18)
Ri{ro.qy) = J; (7o =W (5q0)  (ros) ds (19)
2 (74 Kl(}'urn)lz(':"n“u)K.'(";'ul[n)
R o) = T o 2
2(ro 4 ) n J:» Yo K (oan} ds (20)
Yo = (81 + P72, 2n

The kernel function Ry(re.¢e) has Cauchy type and logarithmic singularities. Sep-
arating the singularities from the function, we obtain

I—b
“‘!tszﬁ(fm‘la) = T—bo log [t—{1+ ‘“:,""2 Me(fu-%)} (22)
0 <y

|

where M y(rq. o) is the Fredholm kernel without the singularities which is given by
"t?i 4o Iy T'a o
R e h
o(ro-4) {(Qn+’o)qg Ty qo—To Yo Fo
+4K(g—2)+§ log [t={| (go < ro)
0
st el
do—ro To Jo Go—7o qo

+3%K(%)+%*og [t (g0 > ra). (23)

K( ) and E( ) are the complete elliptic integrals of the first and second kind, respectively.
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Substituting eqn {22) into (17),, we obtain the singular integral equation of the first kind

S O ({2 } .
EJ‘“, {,_;“‘ e log {z={|+L(ro,qo) {®*(z, P) dt = 1 Q4)
where
L by 2
L(ry. qo) = =5 [Mo(rq. g0) 415 { Ri (7o, go) + R:(ro. 90)}]. (25)
4]

The kernel function R{r;. ¢,) is a semi-infinite integral with a slow rate of convergence.
Using the contour integration technique (Shindo, 1981), eqn (19) can be written as

1

7qi R (ro.qo) = 2P :qé[j; sl (sPqs)K,{5Prg) ds
+ f {5 =7 =D}, (sPgo) K\ (sPry) ds] (g0 < ry)
1

!
= ”2P2¥§[f sKy{sPgo){sPry) ds
o

+J: {s= (2= )2} Ky(sPgo)l, (sPry) d.v]+ nPry (qy > ro). (26)

The kerael function Ra{ry, ¢} s also a semi-infinite integeal with a slow rate of
convergence for ry, ¢ — by = g, Thus, Ry(ry, ¢,) is modified as follows:

. L {5 K ora) a(y0a) K o(70d0) }
2R:(roa.q0) = 243 — 2 — AXs, P ds
i ={ro 40) %L {Yo Ki{yotte) T 7or )
+2¢3 j AT(s, ro qo) ds @n
]

where

by
AY(s,rg qy) = a, ™ atde=2ugds 4 " {e~trotdo= 2agr _ g ~dyr}

k -}
[ 5;
A¥s, rg. e B 1 et e
j; F(s:Fo. o) ds ro+go—2a, +by log ("a*%"‘zﬁfs) 8)
1
T sa———
4 g™
a3 15 30 ,
b= 3 {;;'f‘ ra - 7 —d{rg +qo—2a,}P %

8y = go+ro. (30)
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3. SOLUTION OF THE INTERNAL CRACK PROBLEM

The internal crack problem is now reduced to the solution of eqn (24) under (17),.
The solution of the singular integral equation of the first kind can be put in the form
(Shindo, 1982; Erdogan et al.. 1973)

x

1
®* = 5 3
(. P) =L

A (P)T, (1) (€Y

where T,( ) are the n-order Chebyshev polynomials of the first kind, 4*(P) are unknown
constants and eqn (17), is identically satisfied by eqn (31). Substituting eqn (31) into eqn
(24) and making use of the orthogonality of the Chebyshev polynomials, we obtain an
infinite system of linear algebraic equations

Y ANP) O+ tn+ Pin] = =0 (k=1,2,..)) (32)
n=1
where
3 l-"h ) ! I . [ w? /Y v
Ay = (Zmr i [.1 ’;Tn(g)uk‘l(g)(l =" d¢
2 (! ! l
Bin = 2 J . U (D=3 dCJ T, (t)( U s L({. 1) dr (33)

8, is the Kronecker delta and U, () are the (kK — 1)-order Chebyshev polynomials of the
sccond kind. All integrals in eqns (33) are of the Gauss-Chebyshev type and may be
evaluated casily by using the proper quadrature formulus (Erdogan et al., 1973).

The singular stress ficld can be found as

T K]h(T) co (01,) 1\\‘([') 5in <(),>
" ™ y COS ‘
’ pa)'* 2 ( p )t
‘I:(T) . ()h K;‘ (T) 0“
To: ~ (,)ph), 73 8in ( >+ (7;? cos <2> (34)

where T = ¢y¢/c is the normalized time and (p,. 0,) and (p,, 0,) are the polar coordinates
centered at the crack border in the plane = = 0
7,}

pe=1r—c)*+=*}" 0, =tan " {r:—-} 35)

-

|

| {na

o= {r=b)*+22}"2 0, =tan"" {
r

The dynamic stress intensity factors Ky, (7)) and K,.(T) arc given by

Kw(T) _, (1=ha) 7 1 ! -
Pz h(,( 5 ) 5 BZ 5 (=1 AX(P) T dP

Kull) _ _ ('_ ) f A‘(P)e"TdP (36)
2ri ar,,,

I'OC'“
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4. SOLUTION OF THE EDGE CRACK PROBLEM

In this section, we consider the circumferential edge crack problem for a = b which is
reduced to the solution of eqn (24). The solution of the singular integral equation of the
first kind can be expanded in the form (Anzai er al.. 1981 ; Erdogan et al., 1973)

Oz, P) = ¥ BHP)PL- V(e )(””) @37)

n=0

where Pt~ ¥ 242( ) denote the n-order Jacobi polynomials and B*(P) are unknown constants.
Substituting eqn (37) into eqn (24) and making use of the orthogonality of the Jacobi
polynomials, we have

OV BHP) + T (Gt C BIP) = =m0 (K=0.1.2...)  (38)

=
where

0(0”2'— W2 o Tt

U 226! 2k +2)!n
U U2 S—
o =k ke pizeey E=h2e) 9
1 12
Gin =J P ””(g)W(’)(H‘,) ds (40)
' (kon=0,1,2...)
i 2 . l Q 172
Ckn’—'J. PRI )V(g)( P ) d¢ @n
3
W) = ar, ((+log 2)
23! TO Tl
w,(c)_4ru(n!):22"{ . o } (n=12,..) 42)
'
Va(§) =£f L. 0P, " )(H:) de (n=0,1,2,...). 43)

In eqns (40), (41) and (43), all integrals are of the Gauss—Jacobi type and may be also
evaluated by using the proper quadrature formulas (Erdogan et al., 1973).

Following the similar method in the internal crack problem, the singular stress field in
this case is also obtained as

To: ~ K‘(D» cos (2) )

The dynamic stress intensity factor Ky(T) is given by

Ky(Ty {2(t—ag)}** 1 z

5]
Toc'? do 21 Jo 2

B‘(P)P( H2 !/2)(1) eFT dp. (45)
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Fig. 2. Normalized static stress intensity factor Ky,/toc"? vs b, for various ag ratios.

5. NUMERICAL RESULTS AND CONSIDERATION

An infinite system of algebraic equations, eqns (32) and (38), is solved numerically
and the values of 42(P) and B}(P) are obtained for discrete values of P. Then, using
the Laplace inversion technique developed by Papoulis (1957), the numerical values of
Ku(T)/tec'?, Ky (T)/1ac!? and Ky(T)/tec''? are obtained from eqns (36) and (45).

As T — oo, the dynamic stress intensity factors tend to the static solutions. If we use
the Final-value theorem, we can obtain the static stress intensity factors as follows:

Ko . 1—by\"? &

=i = lim by (~—2—-~") S AXPY-1) (46)
o nwl

K, - (1-ba\"? 2,

ez = = Em =5 Z. AX(P) (47
K 2l — 12 w

;:%%5 = - lim LL;@B——- Y BXHPYPYE-UI(), 48)
[} i nei

Figure 2 shows the variation of normalized static stress intensity factors Ks,,/tec'/? at the
inner tip of the crack against the ratio b, for various values of the ratio a,. The same kind
of results for K, at the outer tip of the crack is shown in Fig. 3. The dashed curves obtained
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Fig. 3. Normalized static stress intensity factor Ky /tqc"? vs by for various g, ratios.
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Table |. Normalized static stress intensity factors Ky, /1,c'?
and K,../1oc"* for b, approaching a,

@ by K jtoc*? K. ltec?
0 _— 04243
4] 0.1 0.1697 0.4239
0.15 0.2062 0.4236
0.2 —_ 0.4241
0.2 0.21 0.3028 0.4224
0.22 0.2779 04219
04 —_ 0.4210
0.4 0.405 0.5085 0.4135
0.41 0.4338 0.4128
0.6 — 0.4085
0.6 0.605 0.5533 0.3854
0.61 0.4644 0.3818
0.8 _— 0.3494
0.8 0.805 0.4343 0.3091
0.81 0.3635 0.3013

for the case of a, = 0 coincide with the static case of a flat annular crack in an infinite
medium, The static stress intensity factor Ky, for a; = 0 tends to zero and K, for g = 0
tends to the solution (4/3n)t,c"? for a penny-shaped crack as b, — 0. It can be seen that
both Ky, and K,,, for a, = 0.4, 0.6, 0.8 increase as the ratio b, decreases. As the inner crack
tip approaches the surfuce of the cylindrical cavity, the values of Ky,,/tc? increase rapidly.
In Table 1, the values of Ky, /15¢¥? and K,./1oc"? are listed for the b, ratio approaching
a,. The computation for a,; < by is based on the internal crack solution in Section 3 and we
cannot obtain the case of the edge crack by simply taking b, to be a,. The numerical result
for by = 4, is based on the edge crack solution in Scction 4. As b, — a4, the values of
K /tee'? und K, /tec’’? do not tend to the results for a circumferential edge crack. This
is also shown for a half-plune with an internal or edge crack by Kaya and Erdogan (1987).

Figures 4 and 5 show the influence of the ratio g, on the transient stress intensity factors
Kultoc"? and K;./roc"? with the time variable 7 for the ratio b, = 0.5, respectively. The
dashed curves for g, = 0 are the results for the case of a flat annular crack in an infinite
medium (Shindo, 1981). As a, is increased, the peak values of K, /toc'? occur at a later
time. The dynamic stress intensity factor K, /to¢'’? tends to the solution of a circumferential
edge crack in a cylindrical cavity as a, — 0.5. The peak values of Ky,/1o¢"? and K,y f14c'?
appear to be higher for larger a, ratios. It is clear that the effect of a cylindrical cavity
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Fig. 4. Normalized dynamic stress inteusity factor Ky/tqec¥? vs T for by = 0.5,
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Fig. 5. Normalized dynamic stress intensity factor K, /tyc’* vs T for b, = 0.5.

diminishes as @, — 0. The effect of a cylindrical cavity on K,/t,c"? is more pronounced
than the effect on K, /toc’.

Figures 6 and 7 exhibit the transicnt stress intensity factor variations Ky /tyc'’® and
Ki./toc"’? with T for the ratio «y = 0.5. The peak values of Ky./t,¢'? and Ky /ty¢"? occur
later in time and increase with the decrease of b,

Figure 8 exhibits the variation of the normalized dynamic stress intensity factor
Ky/tolc=a)? vs T, = T/(1 —a,) for the case of a circumferential edge crack in a cylindrical
cavity. As a, — 0, K/to(c—a)"? tends to the solution of a penny-shaped crack. As a, —
1.0, K+/to(c—a)"? tends to the solution of a semi-infinitc medium with an edge crack of
length ¢ —a normal to the edge under antiplane shear load by Thau and Lu (1970). The
peak values of K3/to(c—a) "2 occur later in time and increase with the increase of .

In conclusion, the dynamic response of an annular or circumierential edge crack in an
infinite elastic solid with a cylindrical cavity is determined in this study. The results are
expressed in terms of the static und dynamic stress intensity factors. The general feature is
that the dynamic stress intensity factor riscs rapidly with time reaching a peak and then
decreases in magnitude and oscillates about its corresponding static value. The peak value
of the dynamic stress intensity factor is found to depend on the geometrical parameters «
and b.
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Fig. 6. Normalized dynamic stress intensity factor Ky./toc" ¥ vs Tfor a, = 0.5.
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Fig. 7. Normalized dynamic stress intensity factor Ky /tocV? vs T'for gy = 0.5.
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Fig. 8. Normalized dynamic stress intensity factor Ky/to{c—a)vs T, (= T/(1 —a,)) for edge crack.
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