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Abstract-The torsional impact response ofa flat annular or circumferential edge crack in an infinite
elastic medium with a cylindrical cavity is investigated. Laplace and Hankel transforms are used to
reduce the problem to a set of integral equations. These equations are solved numerically and the
singular stress field near the crack tip is determined. The influence of geometry and inertia upon
the stress intensity factor is shown graphically in detail.

I. INTRODUCTION

The impact response of a crack has been a subject of recent interest. For an axisymmetric
geometry. the transient response of a flat annular crack in a finite clastic cylinder under a
torsional load has been considered (Shindo. 1982). In studying the fracture problem in
pressure vessels. pipes and other cylindrical containers. if the crack around the inner
boundary is sufficiently small. then the effect of the outer boundary can be neglected as a
first approximation (Anzai et al.• 1981).

Thus the present analysis considers the linear e1astodynamic fracture analysis of a
cylindric~11 cavity having a flat annular or circumferential edge crack. which is subjected to
a torsional impact load. Laplace and Hankel transforms are used to reduce the mixed
boundary value problem to a set of integral equations. The solution is then expressed in
terms of a singular integral equation of the first kind having the kernel with a fast rate of
convergence. The solution of the singular integral equation is expanded in terms of the
Chebyshev polynomials for the internal crack or the Jacobi polynomials for the edge crack
and obtained by solving an infinite set of linear algebraic equations (Erdogan et al.• 1973).
A numerical Laplace inversion technique (Papoulis. 1957) is used to recover the time
dependence of the solution. As the static results have not been reported yct. we discuss thc
static problcm here. too. The dynamic stress intensity factor is computed and the numerical
values arc shown in graphs for various geometrical parameters at designated time instances.

2. FORMULATION OF THE PROBLEM

Let an infinite homogeneous isotropic medium with a cylindrical cavity of radius a. as
shown in Fig. I. be subjected to torsional load. The axis of the cylindrical cavity is assumed

r

Fig. I. Geometry and coordinille system.
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to coincide with the z-axis of the cylindrical coordinate system (r, 0, z). Let J.l and p be the
shear modulus of the medium and the mass density, respectively. A flat annular crack of
inner radius b and outer radius c lies in the plane z = 0 with its center at the origin of the
coordinate axes. Let the components of the displacements in the r-, (J- and z-directions be
denoted by u.. Ull and U:, respectively. For torsional motion, u, and U: vanish everywhere
and UfJ is a function of r. z and time 1 only. The displacement field can thus be written as

(I)

The stress field corresponding to eqn (I) is

(2)

Under these considerations, the equation of motion can be written as

(3)

where c: = J(Jl/p) is the shear W<lve velocity.
For the present case, the initial conditions arc all taken to be zero. The sudden torque

applied to the medium generates torsional waves normally incident on the crack. By the
principle of superposition, the equivalent boundary conditions for which the wave pasSt.'S
across the crack plane at z =0 C..lO be written as

UIJ(r, O. t) = 0, a ~ r ~ b, c ~ r

1:,/I(a, z, I) = 0

(4)

(5)

where H(t) is a Heaviside unit step function and to is a constant with the dimensions of
stress. In addition to eqns (4) and (5), all components ofdisplacement and stress vanish at
remote distances from the crack region.

A Laplace transform pair is defined by

f*(p) = f" f(t) e- pt dl

f(/) = ;;~ r f*(p) ept dp
_7[1 JB'

(6)

where Dr stands for the Bromwich path of integration. Applying the Laplace transform to
eqn (3), we obtain

(7)

The boundary conditions in the Laplace transform plane are
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tor
t~(r,O.p)=--, b<r<c

cp

u:(r.O.p) =0. a~r~b, c~r

r~(a.=.p) = O.

Now using the integral transform. we obtain a solution ofeqn (7)

tl9S

(8)

(9)

u:(r.:.p) = ex A(s.p)J1(sr) e-r= ds+ f~ C(s.p)K.6'r) sin (s:) ds (10)
Jo Jo

where J,,( ) and K,,( ) are usual n-order Bessel and modified Bessel functions, respectively.
A(s.p) and C(s.p) are unknown functions to be determined and

The Laplace tmnsforms of the stress components are

t~,(r.:.p) = -JI f" sA(s.p)Jz(sr) e-)': dS-Jli' ,'C(s.p)Kz(,'r) sin (s:)dsJo 0

(tt)

Substituting eqn (II) I into eqn (9), we obtain

- f' sA(s,p)Jz(sa) e )': d.~-i" yC(s,p)Kz(ya) sin (s:) ds = 0, (12)JD 0

Applying the Fourier sine transform to cqn (12), we obtain

(13)

Making usc of eqns (10) and (II h and conditions (8) leads to the following triple integral
equations:

i" . iX. t r- yA(s.p)J1(sr) ds+ sC(s,p)K1(',r) ds = - _0_ (h < r < c)
o 0 pq

fL A(s.p)Jt(sr) ds =0 (a ~ r ~ h, c ~ r). (14)
JD

In order to solve the triple integral equations, eqns (14), we introduce the representation

A(s.p) = - f qt/>*(q.p)Jz(sq) dq. (15)

For the sake of convenience. we perform the following nondimensionalization and change
of variables:

SAS 24: U-8



1196 Y. SHINDO et aI.

00 =ale, bo= blc

ro == ric == H(l-hoK + I +bo}

qo = qlc == !{(I-bo)T+ 1+bu}

P = pclcz

(16)

Substituting eqns (13) into eqns (14) and making use ofeqns (IS) and (16). we find that

(17)

where

(18)

( 19)

(20)

(21)

The kernel function Rll('o.qo) has Cauchy type and logarithmic singularities. Sep*
arating the singularities from the function. we obtain

(22)

where Mu(ro.qu) is the Fredholm kernel without the singularities which is given by

(23)

K( ) and E( ) are the complete elliptic integrals of the first and second kind. respectively.



Torsional impact response of an axisymmetric internal or edge crack 1197

Substituting eqn (22) into (17) h we obtain the singular integral equation of the first kind

where

1f' {I 3(l-bo) }- -" - 4 log \t-CI+L(ro,qo) 4>"(t,P) dt ... -I
1t -1 f-", ro

(24)

The kernel function R '('0' qo) is a semi-infinite integral with a slow rate ofconvergence.
Using the contour integration technique (Shindo. 1981), eqn (19) can be written as

1Cq~R'('o.qo) = 2PZq{i' s[z{sPqo)K,(sP'n} ds

+i~' {s-(sz_l)ln}ll(SPqQ)K,GvP,o) dsJ (qo < (0)

= -2P2q~[I sKZ(SPqll)[I!SP,o) ds

+f' {S_(.~2 -1)1i2}Kz(sPqu)1 1(sPro) ds]+1tpro (qo > (0)' (26)

The kernel function RZ(f'o,qo) is also a semi-infinite integral with a slow rate of
convergence for '0. qo - ho - au. Thus, Hz(ro, qo) is modified as follows:

where

Ol{] 15 ~ '}b, =- -+----4{'o+qo-2oo)P-
8 '0 qo ao

c5 1 ... qo+ro-

(28)

(29)

(30)
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3. SOLUTION OF THE INTERNAL CRACK PROBLEM

The internal crack problem is now reduced to the solution of eqn (24) under (17h
The solution of the singular integral equation of the first kind can be put in the form
(Shindo. 1982; Erdogan et al.. 1973)

I ~

cI>*(r. P) = (1- :-)I Z L A:(P)Tn(r)
r n= ,

(31)

where Tn( ) are the n-order Chebyshev polynomials of the first kind. A:(P) are unknown
constants and eqn (17)z is identically satisfied by eqn (31). Substituting eqn (31) into eqn
(24) and making use of the orthogonality of the Chebyshev polynomials. we obtain an
infinite system of linear algebraic equations

where

'r!

L An·(P)[Jkn+CCkn+Pkn] = -J lk (k = 1.2....)
n='

l(l-b)f' I_'0 -T.(P)U (P)(I_pz)l/zdPOCkn - ., n t, k- I t, I, t,
_lITt __ 1 r o

(32)

~kn is the Kron~:ckerdelta and Uk _,( ) are the (k - I)-order Chebyshev polynomials of the
second kind. All integrals in ellns (33) are of the Gauss--Chebyshev type and may be
evaluated easily by using the proper quadrature formulas (Erdogan (·t al.• 1973).

The singular stress lield can be found as

_ K1b(T) .. (fh) KdT,)" (fJ,_)
rr" (., )IZ COS 1 -(1 )1: SIO ,.

_JIb - -I', -

f/!. _ El/o~!), sin (f!b)+ }(~".(T~ eos (0,.)
. (21'/0) I. 2 (2p.) I,. 2

(34)

where T= czt/c is the normalized time and (1'/0, fJ/o) and (p,_.O,.) are the polar coordinates
centered at the crack border in the plane: = 0

Pb = {(r_h)z +:Z} liZ, fh = tan' I t-~-b}

P,_ = {(r_c)Z+:Z}IZ. 0< = tan -I t'~J.

The dynamic stress intensity f'lctors K1b(T) and K,AT) are given by

(35)

(36)
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4. SOLUTION OF 11IE EDGE CRACK PROBLEM

In this ~tion. we consider the circumferential edge crack problem for a == b which is
reduced to the solution of eqn (24). The solution of the singular integral equation of the
first kind can be expanded in the fonn (Anzai et al.• 1981: Erdogan et al.• 1973)

(37)

where P;,- I 2. Ii 2)( ) denote the n-order Jacobi polynomials and B::(P) are unknown constants.
Substituting eqn (37) into eqn (24) and making use of the orthogonality of the Jacobi
polynomials. we have

where

(1/2.- 112) _ 2(2k)! (2k +2)! 1t

0. - (1+2k)(k!)~(k+I)!22ik-.:Tl (k== 1.2•...)

3
Wo(O == .-- «( + log 2)

4'0

WnW == 4~(E,n..~!2o-0'n- {TnW + ~n+ 1(I~!} (n == 1.2•...)'0 n.)" - n n+

I II ( )1

0

2_ (-1(2.112) I +r 0

Vn«() - ~ -I L«(.t)Pn (t) I =~ dt (n == 0.1.2•...).

(39)

(40)

(41)

(42)

(43)

In eqns (40). (41) and (43). all integrals are of the Gauss-Jacobi type and may be also
evaluated by using the proper quadrature formulas (Erdogan et al.• 1973).

Following the simihu method in the internal crack problem. the singular stress field in
this case is also obtained as

t / ... - _'!-JLT). sin (0,")
rl (2p,.) 1:2 2

t I - ~~!2" cos (~'.)
I: (2p.. )u 2'

The dynamic stress intensity factor KJ(D is given by

K (T) {'(I-a )} 1.2 I i XI I
~== - - 0 _. L _B:(P)P~-1i2.1/2)(l) el'T dP.
ToC ao 2m B'n_oP

(44)

(45)
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Fig. 2. Normalized static stress intensity factor Klh/ToC U vs bo for various ao ratios.

5. NUMERICAL RESULTS AND CONSIDERATION

An infinite system of algebraic equations, eqns (32) and (38), is solved numerically
and the values of A:(P) and B:(P) are obtained for discrete values of P. Then, using
the Laplace inversion technique developed by Papoulis (1957), the numerical values of
K)b(D/Toc'/2, K J,.(D/ToC" 2and K)(D/ToCI/2 are obtained from eqns (36) and (45).

As T - 00, the dynamic stress intensity factors tend to the static solutions. If we use
the Final-value theorem, we can obtain the static stress intensity factors as follows:

(46)

(47)

(48)

Figure 2 shows the variation of normalized static stress intensity factors KJbJ/toC112 at the
inner tip of the crack against the ratio bo for various values of the ratio au. The same kind
of results for K)(1 at the outer tip of the crack is shown in Fig. 3. The dashed curves obtained
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Fig. J. Normalized static stress intensity factor K xJroc li2 vs bo for various 00 ratios.
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Table l. Normalized static stress intensity factors K./teC1i1

and K1c.!t"c l
,l for bo approaching Do

"0 bo Ky,.lt oC I!l KJa/toc':

0 0.4244
0 0.1 0.1697 0.4239

0.15 0.2062 0.4236

0.2 0.4241
0.2 0.21 0.3028 0.4224

0.22 0.2779 0.4219

0.4 0.4210
0.4 0.405 05085 0.4135

0.41 0.4338 0.4128

0.6 0.4055
0.6 0.605 0.5533 0.3854

0.61 0.4644 0.3818

0.8 0.3494
0.8 0.805 0.4343 0.3091

0.81 0.3635 0.3013

for the case of ao - 0 coincide with the static case of a flat annular crack in an infinite
medium. The static stress intensity factor KJIt., for ao - 0 tends to zero and K'tI for 00 - 0
tends to the solution (4/31t)t'oC l

/
2 for a penny-shaped crack as bo - O. It can be seen that

both K.tlt.• and Kk. for 00 =0.4.0.6,0.8 increase as the ratio bodecreases. As the inner crack
tip approaches the surface of the cylindrical cavity, the values of K JIt./'toCI12 increase rapidly.
In Table I. the values of KJIt./foCI/Z and K.w./foC l/2 are listed for the bo ratio approaching
ao. The computation for 00 < ho is based on the internal crack solution in Section 3 and we
cannot obtain the case of the edge crack by simply laking ho to be 00' The numerical result
for hu =ao is based on the edge crack solution in St.'Ction 4. As bo - ao. the values of
K1h../foCI!2 and Kk ./fuCI12 do not tend to the results for a cireumferential edge crack. This
is .tlso shown for a half.pl.me with an internal or edge crack by Kaya and Erdogan (1987).

Figun.'S 4 and 5 show the inl1uence of the ratio all on the transient stress intensity factors
KJ/,/'roc l

/
2 and Klc/toC I/2 with the time variable T for the ratio bo - 0.5. respectively. The

dashed curves for ao - 0 are the results for the case of a flat annular crack in an infinite
medium (Shindo. 1981). As ao is increased, the peak values of Klc/ToC112 occur at a later
time. The dynamic stress intensity factor Kk /toC I/2tends to the solution ofa circumferential
edge cr,lck in a cylindrical cavity us ao -. 0.5. The peak values of KJb/toC I12 and K'c/'toC I12

appear 10 be higher tor larger alJ ratios. It is clear that the effect of a cylindrical cavity
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Fig. 4. Normalized dynamic stress intensity factor KJI.lrecltl vs Tfor bo '" 0.5.



1202 Y. SHISOO et aI.

a!...a~

r :.g4;",
~'0.0 ...... ""~', ----

(
~.. -

bo ·0.5

0.6

0.4.....u....
........

III

lIl::

0.2

0.0 o.~ 1.0
T

1.5 zo 24

Fig. S. Normalized dynamic stress intensity factor K,Jr"c 1i
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diminishes as ao - O. The effect of a cylindrical cavity on Ky,/roc I/2 is more pronounced
than the effect on K.k /toc: I

/
2

•

Figures 6 and 7 exhibit the transient stress intensity factor variations Kllt/toc l
'2 and

KJ.-/toC I/2 with T for the ratio ao = 0.5. The peak values of KI,,/tuClll and K\,/tIlC I12 occur
loiter in time and incre~lse with the decre..sc of hll•

Figure 8 exhibits the variation of the norm~llizcd dynamic stress intensity factor
KJ/tll(c-a) 112 vs Tc = T/( I -lin) for the case of a circumferential edge crack in'l cylindrical
cavity. As llo-O. KI/rll(c:-a)1/2 tcnds to the solution ofa penny-shaped crack. As (lll­
1.0, Klro(c-a)J /2 tends to the solution of a semi-infinite medium with an edge crack of
length c-a normal to the edge under antipl;'lnc shcar load by Thall and Lu (1970). The
peak values of KJ/tll(c- a) 112 occur later in lime i.lnd increase with the increase of Cln•

fn conclusion. the dyn:.amic response of;'In unnular or circumferential edge crack in an
infinite elastic solid with a cylindrical c;'lvity is determined in this study. The results arc
expressed in terms of the static and dynamic stress intensity factors. The general feature is
that the dynamic stress intensity f.tctor rises rapidly with time reaching a peak and then
decreases in magnitude and oscillates about its corresponding static value. The pc'lk value
of the dynamic stress intensity factor is found to depend on the geometrical p:.arameters et

and h.
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Fig. 6. Normalized dynamic stress intensity factor K,,,!T:oC '.: vs T for ao = 0.5.
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